Дайджест специального международного проекта Центров поддержки и инноваций Российской Федерации

«ИС и молодёжь: инновации во имя будущего»

Саболиров	Ахмед Русланович
27	лет

ФГБОУ ВО Кабардино-Балкарский ГАУ Аспирант 4 года обучения

Тема работы: **Инновационные технологии в сельском хозяйстве**

Научная работа реализуется в аграрном секторе республики

Область научной активности:

Сельскохозяйственные науки

RU 2683373 от 28.03.19г.

Способ повышения масличности семян рыжика озимого

Изобретение относится к области сельского хозяйства. Предложен способ повышения масличности рыжика семян озимого, согласно которому в воде растворяют смесь биопрепарата мелафен в концентрации 0,05%, биопрепарата Никфан – 0,1% и сиропа сахарного тростника в концентрации 1% от общего объема раствора. Замачивают в нем семена при экспозиции 1-2 часа, а в фазу полного цветения растений осуществляют раствором. Способ подкормку ЭТИМ позволяет получить качественный урожай масличной культуры рыжика озимого.

RU 2681579 от 11.03.19г. Способ возделывания чечевицы в биологическом земледелии

Изобретение относится к области сельского хозяйства, в частности к растениеводству. В способе после предшественника - озимой пшеницы высевают смесь промежуточных культур клевера александрийского в смеси с поддерживающей культурой рыжиком озимым широкорядно в соотношении 2:1. Весной в междурядья высевают чечевицу и в фазе 4-5 листьев удаляют отрастающие растения промежуточных культур в качестве сидератов. Оставшиеся растения зернобобовой КУЛЬТУРЫ подкармливают биопрепаратом Полидон Био Профи в концентрации 0,01% водного раствора. Способ позволяет без использования гербицидов получить экологически чистую продукцию.

RU 2672402 от 14.11.18г. Комплексное органоминеральное удобрение с микроэлементами

Изобретение относится к области экологии и сельского хозяйства. В состав комплексного удобрения органоминерального микроэлементами в качестве органического вещества ВХОДЯТ невсхожие сельскохозяйственных культур, замоченные в борсодержащей термальной соотношении 1:3. В полученную смесь вводят молибденсодержащие ОТХОДЫ промышленности, древесные отходы - шишки хвойных пород и минеральную основу цеолитсодержащую глину Диалбекулит в следующем соотношении компонентов (%): Диалбекулит 70-75. глина молибденошеелитовые 5-6, ОТХОДЫ невсхожие семена сельскохозяйственных культур - 3-6, древесные отходы - шишки 6-8, борсодержащая хвойных додоп минеральная вода 9-12. Обеспечивается повышение урожайности сельскохозяйственных культур

RU 2726990 от 17.07.2020

от Способ снижения засоренности посевов кукурузы

Изобретение относится области сельского хозяйства. В частности растениеводству, и может найти применение в борьбе с сорной растительностью при возделывании кукурузы. Способ снижения засоренности посевов кукурузы заключается в том, что перед посевом кукурузы при обработке почвы вносят регуляторы роста аммиачную селитру в концентрации 10% раствора ΒΟΔΗΟΓΟ С дополнительным введением 0,2% раствора биопрепарата После появления Никфан. сорной растительности опрыскивают гербицидом Трофи-90, a фазе 5-6 листьев возделываемой КУЛЬТУРЫ опрыскивают глифосатсодержащим гербицидом Торнадо 500 в половинной дозе, покрывая междурядья слоем цеолитсодержащей глины аланит в количестве 4-5 т/га. Предлагаемый способ снижения засоренности посевов кукурузы позволяет снизить токсическую нагрузку на агроэкосистему, улучшить плодородие почвы и увеличить продуктивность возделываемой культуры.

RU 2813530 от 13.02.24г. Способ предпосевной обработки семян зернобобовых культур

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ предпосевной обработки семян зернобобовых КУЛЬТУЮ включает приготовление раствора и замачивание семян в водном растворе биопрепаратов и растения-стимулятора амброзии полыннолистной. Раствор получают, заливая амброзию полыннолистную, собранную в период цветения и салициловую кислоту, горячей водой 80-85°C и выдерживают в течение 10 дней. В полученный раствор, 8-10% содержащий амброзии полыннолистной и 0,2-0,3% салициловой кислоты, добавляют 2-3% азотфиксирующих бактерий рода Rizobium И органоминерального удобрения Биогумус. Использование изобретения ПОЗВОЛИТ увеличить энергию прорастания зернобобовых культур и всхожесть семян, и снизить их заболеваемость.

RU 2820618 от Способ предпосевной обработки семян зерновых 06.06.24г. культур

Изобретение относится к области сельского хозяйства. Предложен способ предпосевной обработки семян зерновых КУЛЬТУР, включающий приготовление ΒΟΔΗΟΓΟ раствора И3 растения-стимулятора амброзии полыннолистной и замачивание в нем семян. Раствор получают, используя амброзию полыннолистную, собранную в Период цветения, и салициловую кислоту, с добавлением горячей водой температурой 80-85°С. Полученный раствор выдерживают в течение 20 дней и добавляют в него органоминеральное удобрение Биогумус. Изобретение ПОЗВОЛЯЕТ ПОВЫСИТЬ эффективность предпосевной обработки зерновых культур, СНИЗИТЬ затраты заболеваемость растений. **УВЕЛИЧИТЬ** всхожесть семян

RU 2820704 от 07.06.24г.

Способ предпосевной обработки семян зернобобовых культур

Изобретение относится к области сельского хозяйства, в частности к растениеводству. способ Предлагается предпосевной обработки семян зернобобовых культур, включающий инокулирование семян для активизации симбиотрофного процесса, который осуществляется путем приготовления раствора и замачивания семян в водном растворе биопрепаратов растения-И стимулятора - амброзии полыннолистной, причем раствор получают, заливая 1-1,5 кг амброзии полыннолистной, собранной в период цветения, и 18-20 г салициловой кислоты горячей водой 80-85°С из расчета на 10 л, выдерживая 10 дней, в полученный двухкомпонентный раствор добавляют 200 г азотфиксирующих бактерий рода Rizobium, 150-200 мл органоминерального удобрения Биогумус и полимерный регулятор роста «ПМАГ» полиметакрилатгуанидина, молекулярной массой 500 тыс. усл. ед., с концентрацией 0,1-0,2%. В ходе проведения исследований было установлено, предпосевная обработка водным раствором биопрепаратов, полимерного регулятора роста «ПМАГ» и растения-стимулятора на основе амброзии полыннолистной (Ambrosia artemisiifolia L.) увеличивает энергию прорастания зернобобовых культур на 27,8%, лабораторную на 26,3% и полевую всхожесть 32.3%. снижается семян Нα заболеваемость.

RU 2830868 от Способ предпосевной обработки семян лекарственных 26.11.24г. культур

Изобретение относится Κ сельскому хозяйству. Предложен способ предпосевной обработки семян лекарственных культур. При этом проводят замачивание семян в течение 8 часов в ΒΟΔΗΟΜ растворе полимера Полидиаллилдиметиламмоний хлорида (Полидадмак) с молекулярной массой -494,1 тыс. усл. ед., с дозировкой - 5 мг, регулятора роста растений Стимулэйт, Ж -0,25 л и биопрепарата Бактофит - 20 мл на 10 л воды на 1 гектарную норму семян. Изобретение обеспечивает увеличение энергии прорастания, СИЛЫ роста, лабораторной И полевой всхожести, снижения поражаемости лекарственных растений болезнями.

Лауреат Премии Главы КБР в области науки и инноваций для молодых ученых в 2023г.

Саболиров Ахмед Русланович поступил в ФГБОУ ВО Кабардино-Балкарский ГАУ в 2015 г. Затем продолжил обучение в 2019 году в магистратуре по направлению подготовки «Агрономия» и получив диплом с отличием поступил в 2021 году в аспирантуру.

Имеет около восьмидесяти публикаций. Соавтор двух статей, входящих в базу данных Scopus. Соавтор семи статей, которые входят в перечень изданий, рекомендованных ВАК Минобрнауки России.

Выполняет научно-исследовательскую работу «Инновационные технологии в сельском хозяйстве» под руководством профессора Ханиевой И.М.

Является победителем и призером Международных, Всероссийских и региональных конкурсов и конференций.

Является одним из победителей гранта «Росмолодежи» по выращиванию стевии и производству заменителя сахара «Novus-Stevia» Всероссийского конкурса молодежных проектов в номинации «Наука и инновации», 2018г.

Является победителем Международного научно-исследовательского конкурса «Researchers against global», г. Петрозаводск, май 2022г., (диплом первой степени); победитель II Международного научно-исследовательского конкурса «Лучшая научно-инновационная работа-2022», г. Петрозаводск, апрель 2022г., (диплом первой степени); призер международного конкурса профессиональных презентаций для студентов, преподавателей и профессионалов «Высокие технологии и наука: достижения и инновации», г. Нижний Новгород, июнь 2022 г. (диплом третьей степени), диплом Международного конкурса «Лучший проект 2021-2022 учебного года», октябрь, 2022 (диплом второй степени) .г. Нижний Новгород, диплом победителя II Всероссийского (с международным участием) студенческих научноисследовательских работ, СибГУ, Красноярск, декабрь 2022, диплом III Республиканского конкурса (с международным участием) презентаций, фотоколлажей И видеороликов RΛД СТУДЕНТОВ общеобразовательных учреждений «Моя аграрная республика», г. Макеевка, апрель 2023г. (диплом второй степени). (ДНР)

Соавтор научно- практических рекомендаций по выращиванию и переработке стевии: пособие для начинающих фермеров, ноябрь 2018г.

Два года подряд становился призером третьего этапа Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых высших учебных заведений МСХ РФ в номинации «Садоводство», июнь 2019г. в г. Краснодар (диплом 3 степени), в г. Мичуринск, июнь 2020г. (диплом 3 степени).

Соавтор проекта «Совершенствование технологии выращивания лекарственных культур, адаптированных к условиям Кабардино-Балкарской Республики», получившего диплом и серебряную медаль на XXIII агропромышленной выставке «Золотая осень-2021», г. Москва

Соавтор проекта «Разработка технологии выращивания гибридов кукурузы в биологическом земледелии», получившего диплом и золотую медаль на IVXX агропромышленной выставке «Золотая осень-2022», г. Москва.

Соавтор проекта «Разработка технологии выращивания озимой пшеницы в биологическом земледелии», получившего диплом и золотую медаль на VXX агропромышленной выставке «Золотая осень-2023», г. Москва.

Соавтор восьми патентов на изобретения. Входит в состав СМУС КБР, Избран в новый состав Молодежного Совета, при Общественной палате КБР. Владеет английским языкам.

